On Relation between the Kirchhoff Index and Laplacian-Energy-Like Invariant of Graphs
Authors
Abstract:
Let G be a simple connected graph with n ≤ 2 vertices and m edges, and let μ1 ≥ μ2 ≥...≥μn-1 >μn=0 be its Laplacian eigenvalues. The Kirchhoff index and Laplacian-energy-like invariant (LEL) of graph G are defined as Kf(G)=nΣi=1n-11/μi and LEL(G)=Σi=1n-1 √μi, respectively. In this paper we consider relationship between Kf(G) and LEL(G).
similar resources
Comparison between Laplacian--energy--like invariant and Kirchhoff index
For a simple connected graph G of order n, having Laplacian eigenvalues μ1, μ2, . . . , μn−1, μn = 0, the Laplacian–energy–like invariant (LEL) and the Kirchhoff index (Kf) are defined as LEL(G) = ∑n−1 i=1 √ μi and Kf(G) = n ∑n−1 i=1 1 μi , respectively. In this paper, LEL and Kf are compared, and sufficient conditions for the inequality Kf(G) < LEL(G) are established.
full textA note on the bounds of Laplacian-energy-like-invariant
The Laplacian-energy-like of a simple connected graph G is defined as LEL:=LEL(G)=∑_(i=1)^n√(μ_i ), Where μ_1 (G)≥μ_2 (G)≥⋯≥μ_n (G)=0 are the Laplacian eigenvalues of the graph G. Some upper and lower bounds for LEL are presented in this note. Moreover, throughout this work, some results related to lower bound of spectral radius of graph are obtained using the term of ΔG as the num...
full texton laplacian-energy-like invariant and incidence energy
for a simple connected graph $g$ with $n$-vertices having laplacian eigenvalues $mu_1$, $mu_2$, $dots$, $mu_{n-1}$, $mu_n=0$, and signless laplacian eigenvalues $q_1, q_2,dots, q_n$, the laplacian-energy-like invariant($lel$) and the incidence energy ($ie$) of a graph $g$ are respectively defined as $lel(g)=sum_{i=1}^{n-1}sqrt{mu_i}$ and $ie(g)=sum_{i=1}^{n}sqrt{q_i}$. in th...
full textThe Laplacian Polynomial and Kirchhoff Index of the k-th Semi Total Point Graphs
The k-th semi total point graph of a graph G, , is a graph obtained from G by adding k vertices corresponding to each edge and connecting them to the endpoints of edge considered. In this paper, a formula for Laplacian polynomial of in terms of characteristic and Laplacian polynomials of G is computed, where is a connected regular graph.The Kirchhoff index of is also computed.
full textOn relation between the Kirchhoff index and number of spanning trees of graph
Let $G=(V,E)$, $V={1,2,ldots,n}$, $E={e_1,e_2,ldots,e_m}$,be a simple connected graph, with sequence of vertex degrees$Delta =d_1geq d_2geqcdotsgeq d_n=delta >0$ and Laplacian eigenvalues$mu_1geq mu_2geqcdotsgeqmu_{n-1}>mu_n=0$. Denote by $Kf(G)=nsum_{i=1}^{n-1}frac{1}{mu_i}$ and $t=t(G)=frac 1n prod_{i=1}^{n-1} mu_i$ the Kirchhoff index and number of spanning tree...
full textMy Resources
Journal title
volume 2 issue 2
pages 141- 154
publication date 2017-12-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023